

Automating Work with Tapis Actors

Contents:

	Introduction to Tapis Actors

	Set Up Your Environment

	Build Hello World Actor

	Slackbot Actor

	Send a Message Between Actors

	Deploying a Sequencing Pipeline

Indices and tables

	Index

	Module Index

	Search Page

Introduction to Tapis Actors

What is Tapis?

	Tapis is TACC’s Application Programming Interface
	
	Science-as-a-Service platform

	Web services that provide access to TACC resources

	Can provide access to other resources

	Supports common file and compute job operations

	Used by TACC Portals

More information about Tapis and its current and future capabilities is available at:
The Tapis Project [https://tapis-project.org]

What is Tapis Actors?

Tapis Actors is a form of serverless computing like AWS Lambda,
Firebase Functions, or OpenFaas, but are tailored to support the
needs of research computing.

What is the use case?

	I need X to happen when Y occurs.
	
	I need to load a JSON file into a database when it is uploaded to my $WORK

	I need to send an email to my supervisor when this analysis detects something interesting

	I need to launch the next stage in workflow when the current stage completes successfully

	I need to generate and email a report when the time is 1:00 PM each day

	I need to compute a value N when given an input P

The Tapis Actors API lets you deploy functions or services that accomplish these (and many other) use cases.

	Tapis Actors also lets you:
	
	
	Avoid lockin
	
	Built as Docker containers

	Underlying platform is free and open-source

	
	Deploy any code
	
	Write new function code in any language

	Bring in legacy software and binaries

	
	Run at any scale
	
	Automatically scale up when needed

	Scale to zero when not

Tapis Actors can run standalone, be composed into complex workflows,
or integrated with external third-party platforms. They serve as
connecting threads amongst the complex systems in our commercial and
research computing ecosystems.

What is an Actor?

For our purposes, an Actor is a container-based function-as-a-service deployed
on a software platform called Abaco, where it will follow the actor model of
concurrent computation.

	In response to a message it receives, an Actor can
	
	Make local decisions

	Create more actors

	Send more messages

	Determine how to respond to the next message received.

Actors may modify their own private state, but can only affect each
other indirectly through messaging. The actor model is characterized
by concurrency of computation within and among actors, dynamic
actor creation, requirement for actor addresses in messages, and
interaction only through direct message passing.

In the Tapis Actors implementation, each actor registered in the system is
associated with a Docker image. Actor containers are executed in response to
messages posted to their inbox, which itself is given by a URI exposed via the
system. In the process of executing each actor container state, logs and
execution statistics are collected.

Typically, functions performed by actors are quick and require little processing power.
Use cases with more substantial run times or resource requirements are usually
best addressed using Tapis Apps.

How Does an Actor Work?

The function an actor performs is specified as the default command
in a Docker container. Code for this function is written based around a
handful of core assumptions:

	The message is passed via an environment variable MSG

	Supplemental environment variables can be specified when the actor is deployed

	Parameters can be provided alongside the message, which are passed as additional environment variables

	The execution environment is read-only and unpriveleged

	Inbound network connections are disallowed

	Outbound network connections are unrestricted

	The execution environment is destroyed when the function has completed

	STDERR and STDOUT are captured by the Abaco platform for later review

Depending on the configuration of your specific Tapis Actors tenant, the following
additional assumptions may apply. For the tacc.prod tenant running at TACC, they
absolutely do.

	A Tapis access token is available via an environment variable

	The TACC $WORK filesystem is mounted and writeable at /work

	Code will run as your TACC-default user and group ID

Workflow

The workflow for bworking with Actors will be covered in detail
in this tutorial, but briefly, is as follows:

	Write code and package into a Docker container

	Push the container to a public container registry (DockerHub)

	Register an actor to use the container

	Send a message to the actor

	Verify execution by inspecting the logs

	(Optional) Update container or actor

	(Optional) Share the actor with other users

	(Optional) Delete the actor

Learn More

For a full reference guide to actors, see the
Tapis Actors online documentation [https://tacc-cloud.readthedocs.io/projects/abaco/en/latest/index.html].

Set Up Your Environment

Building, deploying, managing, and using Tapis Actors
is comprehensively supported via the Tapis CLI and a
local installation of Docker. In this section, we will
cover preparation of your working environment.

Prerequisites

You will need the following to work with Tapis Actors:

	A TACC account [https://portal.tacc.utexas.edu/account-request]

	A DockerHub account [https://hub.docker.com/signup]

	A terminal emulator and/or SSH client

Local Development Environment

Many people develop and use Actors right on their local laptop
computer using the Tapis CLI and Docker Desktop

	Install Docker: Mac [https://docs.docker.com/docker-for-mac/] | Ubuntu [https://docs.docker.com/install/linux/docker-ce/ubuntu/] | Windows [https://docs.docker.com/docker-for-windows/]

	Ensure Docker is installed and active: docker images list

	Log into DockerHub: docker login

	Install the Tapis CLI: pip3 install tapis-cli (Tapis CLI is Python3-only)

	Check that the CLI is available: tapis -h

Note

You can also install the latest Tapis CLI from source [https://github.com/TACC-Cloud/tapis-cli] but we recommend using the version available on PyPi.

Configure the Tapis CLI

Tapis CLI must be configured to talk to the Tapis APIs and DockerHub. The
auth init command is an interactive workflow that guides you through that
process.

$ tapis auth init --interactive

 Configure Tapis API access:
 ===========================
 +---------------+--------------------------------------+--+
 | Name | Description | URL |
 +---------------+--------------------------------------+--+
3dem	3dem Tenant	https://api.3dem.org/
a2cps	Acute to Chronic Pain Signatures	https://api.a2cps.org/
bridge	Bridge	https://api.bridge.tacc.cloud/
designsafe	DesignSafe	https://agave.designsafe-ci.org/
iplantc.org	CyVerse Science APIs	https://agave.iplantc.org/
irec	iReceptor	https://irec.tenants.prod.tacc.cloud/
portals	Portals Tenant	https://portals-api.tacc.utexas.edu/
sd2e	SD2E Tenant	https://api.sd2e.org/
sgci	Science Gateways Community Institute	https://sgci.tacc.cloud/
tacc.prod	TACC	https://api.tacc.utexas.edu/
vdjserver.org	VDJ Server	https://vdj-agave-api.tacc.utexas.edu/
 +---------------+--------------------------------------+--+
 Enter a tenant name [tacc.prod]: tacc.prod
 Verify SSL connections [Y/n]: Y
 tacc.prod username: vaughn
 tacc.prod password for vaughn: <password>

 Container registry access:

 Registry Url [https://index.docker.io]:
 Registry Username [mwvaughn]: mwvaughn
 Registry Password []: <password>
 Registry Namespace [sd2e]: mwvaughn
 +--------------------+----------------------------------+
 | Field | Value |
 +--------------------+----------------------------------+
tenant_id	tacc.prod
username	vaughn
api_key	k_Mt8PGe_e1T4fSFpnvfSkVOyIQa
access_token	cbbb521f1f4df4ad278d6dbf30168812
expires_at	Wed Aug 25 13:21:00 2021
verify	True
registry_url	https://index.docker.io
registry_username	mwvaughn
registry_password	p******d
registry_namespace	mwvaughn
 +--------------------+----------------------------------+

Now, confirm that Tapis CLI is properly configured by retrieving your
user data from the tapis profiles service.

$ tapis profiles show me
+--------------+------------------------+
| Field | Value |
+--------------+------------------------+
first_name	Matthew
last_name	Vaughn
email	vaughn@tacc.utexas.edu
mobile_phone	
phone	
username	vaughn
+--------------+------------------------+

Using a VM

If you find that your local system does not support the Tapis CLI or Docker, it
is possible to use a virtual machine. Please do feel free to reach out to us at TACC for assistance.

Build Hello World Actor

Let us build our hello-world actor!

Create a New Actor

The function of an actor is exposed as the default command in a Docker
container. Here, we will create an actor from an existing Docker container image
called tacc/hello-world:1.0 available on
Docker Hub [https://hub.docker.com/repository/docker/tacc/hello-world].
The default command for this container simply prints the message “Hello, World” or
the message sent to it, which will be captured in the actor logs.

Create the actor as:

$ tapis actors create --repo tacc/hello-world:1.0 \
 -n hello-world-actor \
 -d "Test actor that says Hello, World"
+----------------+-----------------------------+
| Field | Value |
+----------------+-----------------------------+
id	NN5N0kGDvZQpA
name	hello-world-actor
owner	taccuser
image	tacc/hello-world:1.0
lastUpdateTime	2021-07-14T22:25:06.171534
status	SUBMITTED
cronOn	False
+----------------+-----------------------------+

The --repo flag points to the Docker Hub repo on which this actor is based,
the -n flag and -d flag attach a human-readable name and description to
the actor.

The resulting actor is assigned an id: NN5N0kGDvZQpA. The actor id can be
queried by:

$ tapis actors show NN5N0kGDvZQpA
+-----------------+-----------------------------------+
| Field | Value |
+-----------------+-----------------------------------+
id	NN5N0kGDvZQpA
name	hello-world-actor
description	Test actor that says Hello, World
owner	taccuser
image	tacc/hello-world:1.0
createTime	2021-09-21T20:05:10.738Z
lastUpdateTime	2021-09-21T20:05:10.738Z
gid	859336
link	
privileged	False
queue	default
stateless	True
status	READY
statusMessage	
token	True
uid	859336
useContainerUid	False
webhook	
cronOn	False
cronSchedule	None
+-----------------+-----------------------------------+

Above, you can see the plain text name, description that were passed on the command line. In addition, you can see the
“status” of the actor is “READY”, meaning it is ready to receive and act on
messages. Finally, you can list all actors visible to you with:

$ tapis actors list
+---------------+-------------------+----------+-----------------------------+----------------------------+--------+-------+
| id | name | owner | image | lastUpdateTime | status | cronOn|
+---------------+-------------------+----------+-----------------------------+----------------------------+--------+-------+
| NN5N0kGDvZQpA | hello-word-actor | taccuser | tacc/hello-world:1.0 | 2021-07-14T22:25:06.171Z | READY | False |
+---------------+-------------------+----------+-----------------------------+----------------------------+--------+-------+

Submit a Message to the Actor

Next, let’s craft a simple message to send to the reactor. Messages can be plain
text or in JSON format. When using the python actor libraries as in the example
above, JSON-formatted messages are made available as python dictionaries.

Submit the message to the actor
$ tapis actors submit -m "Hello, World" NN5N0kGDvZQpA
+-------------+---------------+
| Field | Value |
+-------------+---------------+
| executionId | N4xQ5WM5Np1X0 |
| msg | Hello, World |
+-------------+---------------+

The id of the actor (N4xQ5WM5Np1X0) was used on the command line to specify
which actor should receive the message. In response, an “execution id”
(N4xQ5WM5Np1X0) is returned. An execution is a specific instance of an actor.
List all the executions for a given actor as:

$ tapis actors execs list NN5N0kGDvZQpA
+---------------+----------+
| executionId | status |
+---------------+----------+
| N4xQ5WM5Np1X0 | COMPLETE |
+---------------+----------+

Show detailed information for the execution with:

$ tapis actors execs show -v NN5N0kGDvZQpA N4xQ5WM5Np1X0
 {
 "actorId": "NN5N0kGDvZQpA",
 "apiServer": "https://api.tacc.utexas.edu",
 "cpu": 121748743,
 "exitCode": 0,
 "finalState": {
 "Dead": false,
 "Error": "",
 "ExitCode": 0,
 "FinishedAt": "2021-07-14T22:32:45.602Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2021-07-14T22:32:45.223Z",
 "Status": "exited"
 },
 "id": "N4xQ5WM5Np1X0",
 "io": 176,
 "messageReceivedTime": "2021-07-14T22:32:37.051Z",
 "runtime": 1,
 "startTime": "2021-07-14T22:32:44.752Z",
 "status": "COMPLETE",
 "workerId": "JABKl4BeDwXJD",
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA/executions/N4xQ5WM5Np1X0/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/sgopal",
 "self": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA/executions/N4xQ5WM5Np1X0"
 }
 }

We can see here that the above execution has already completed.

Check the Logs for an Execution

An execution’s logs will contain whatever was printed to STDOUT / STDERR by the
actor. In our demo actor, we just expect the actor to print the message passed to it.

$ tapis actors execs logs NN5N0kGDvZQpA N4xQ5WM5Np1X0
Logs for execution N4xQ5WM5Np1X0
 Actor received message: Hello, World

In a normal scenario, the actor would then act on the contents of a message to, e.g.,
kick off a job, perform some data management, send messages to other actors, or
more.

Run Synchronously

The previous message submission (with tapis actors submit) was an
asynchronous run, meaning the command prompt detached from the process after
it was submitted to the actor. In that case, it was up to us to check the execution
to see if it had completed and manually print the logs.

There is also a mode to run actors synchronously using tapis actors run,
meaning the command line stays attached to the process awaiting a response after
sending a message to the actor.

Delete and Update an Actor

Actors can be deleted with the following:

$ tapis actors delete NN5N0kGDvZQpA
+----------+-------------------+
| Field | Value |
+----------+-------------------+
| deleted | ['NN5N0kGDvZQpA'] |
| messages | [] |
+----------+-------------------+

This will delete the actor and any associated executions.
Actors can also be updated with the tapis actors update command to make changes once created.

Need help? Ask your questions using the [TACCSTER 2021 Slack Workspace] using the #tutorial-automating-work-at-tacc-with-tapis-actors channel.

Slackbot Actor

In this section, we will create an actor that sends a message to a Slack Channel
using a webhook provided by Slack. A pre-requisite requirement is an active webhook
for your Slack workspace.

Writing Customized Actors

Recall that Tapis Actors are essentially bits of code wrapped in lightweight environments called containers.
When we deployed the hello-world Actor in the previous section, we used a pre-built Docker container (tacc/hello-world:1.0).
However, a more common use case is to write custom code that runs whenever the Actor executes. To do this, we must first build a
Docker image using our custom actor.py, push the Docker image to a public image registry (DockerHub), and instruct Tapis to
use our custom image when executing the container.

If you are interested in learning more about Docker containers, please attend our deep dive Docker container session
tomorrow (Friday Sept. 24th), where we
will cover custom image creation, common use cases, and more. The documentation
for this session can be found here [https://containers-at-tacc.readthedocs.io/en/latest/] .

Initialize a New Actor slackbot-actor

$ mkdir slackbot_actor
$ cd slackbot_actor
$ touch Dockerfile actor.py
$ find -L .
.
./Dockerfile
./actor.py

Edit the Actor Source Code in actor.py

An example of a functional actor that says sends a slack message is:

actor.py
"""Forward message from Actor inbox to Slack"""

from agavepy.actors import get_context
import requests
import os
import simplejson as json

def post_to_slack(message: str):
 """Forward string type `message` to Slack channel"""

 webhook_url = os.environ.get('SLACK_WEBHOOK')
 print("Actor sending message to Slack: {0}".format(message))

 response_from_slack = requests.post(
 webhook_url, data=json.dumps({'text': message}),
 headers={"Content-type": "application/json"})
 print("Response from Slack:")
 print(response_from_slack)

def main():
 """Main entrypoint"""
 context = get_context()
 message = context['raw_message']
 post_to_slack(message)

if __name__ == '__main__':
 main()

Here inject the necessary environment variable SLACK_WEBHOOK set from tapis actors create command.
How do we get the webhook into our Actor? We don’t. Instead of embedding it in the underlying container, it is defined as an environment variable in
the Actor. We must set SLACK_WEBHOOK while creating the actor. This can be done using Tapis CLI.
In the tapis actors create command, we can pass it as an environment variables via the -e flag.

Write the Dockerfile

The first step to building our customized Actor is to build a customized Docker image.
To do this, we write a Dockerfile, which is
a list of instructions for building our customized environment.
The below Dockerfile constructs an image containing a Python3 runtime
environment, Python package dependencies installed by pip, and our actor.py script.
The pip-installed requirements are agavepy, requests
simplejson python libraries, which are
available through
PyPi [https://pypi.org/].

pull base image, which provides a Python3 runtime
FROM python:3.6

install package dependencies using pip
RUN pip3 install agavepy simplejson requests

add our custom Python script
ADD actor.py /actor.py

command to run the python script
CMD ["python", "/actor.py"]

Build Docker Container

We can now use our Dockerfile to build a custom Docker image:

Note

In the below command, make sure to replace taccuser with your DockerHub username.

Build and tag the image
$ docker build -t taccuser/slackbot-actor:1.1 .
Sending build context to Docker daemon 4.096kB
Step 1/5 : FROM python:3.6
...
Successfully built b0a76425e8b3
Successfully tagged taccuser/slackbot-actor:1.1

Push the tagged image to Docker Hub
$ docker push taccuser/slackbot-actor:1.1
The push refers to repository [docker.io/taccuser/slackbot-actor]
...
1.1: digest: sha256:67cc6f6f00589d9ae83b99d779e4893a25e103d07e4f660c14d9a0ee06a9ddaf size: 1995

Create the Actor

We pass the SLACK_WEBHOOK as an environment variable during the time of actor creation.

$ tapis actors create --repo taccuser/slackbot-actor:1.1 \
 -n slackbot-actor \
 -d "Send a message containing text to Slack channel" \
 -e SLACK_WEBHOOK="https://hooks.slack.com/services/${XXXsecretXtokenXXX}"

+----------------+----------------------------+
| Field | Value |
+----------------+----------------------------+
id	ww15Ex5oLxJ6b
name	slackbot-actor
owner	taccuser
image	taccuser/slackbot-actor:1.1
lastUpdateTime	2021-08-24T14:31:58.248860
status	SUBMITTED
+----------------+----------------------------+

$ tapis actors show ww15Ex5oLxJ6b
+-----------------+---+
| Field | Value |
+-----------------+---+
id	ww15Ex5oLxJ6b
name	slackbot-actor
description	Send a message containing text to Slack channel
owner	taccuser
image	taccuser/slackbot-actor:1.1
createTime	2021-09-21T20:27:05.613Z
lastUpdateTime	2021-09-21T20:27:05.613Z
gid	859336
link	
privileged	False
queue	default
stateless	True
status	READY
statusMessage	
token	True
uid	859336
useContainerUid	False
webhook	
cronOn	False
cronSchedule	None
+-----------------+---+

we can see the “status” of the actor is “READY”, meaning it is ready to receive and act on
messages.

Finally, you can list all actors visible to you with:

$ tapis actors list

+---------------+---------------+----------+-----------------------------+----------------------------+--------+
| ww15Ex5oLxJ6b | slackbot-actor| taccuser | taccuser/slackbot-actor:1.1 | 2021-08-25T14:04:42.819Z | READY |
+---------------+---------------+----------+-----------------------------+----------------------------+--------+

Submit a Message to the Actor

Submit the message to the actor
$ tapis actors submit -m "Hello, Slack!" ww15Ex5oLxJ6b
+-------------+---------------+
| Field | Value |
+-------------+---------------+
| executionId | EjO6yw03GKRmR |
| msg | Hello, Slack |
+-------------+---------------+

Let us grab the executionId from here to track the progress of the actor.

List Executions of Actor

The above execution has already completed. Show detailed information for the
execution with:

$ tapis actors execs show ww15Ex5oLxJ6b EjO6yw03GKRmR
+-----------+-----------------------------+
| Field | Value |
+-----------+-----------------------------+
actorId	ww15Ex5oLxJ6b
apiServer	https://api.tacc.utexas.edu
id	EjO6yw03GKRmR
status	COMPLETE
workerId	EbQByMAXeMVPa
+-----------+-----------------------------+

Check the Logs for an Execution

In our slackbot-actor, we expect the actor to print the message passed to it and notify on the slack channel.

$ tapis actors execs logs ww15Ex5oLxJ6b EjO6yw03GKRmR
Logs for execution EjO6yw03GKRmR
 Actor sending message to Slack: Hello, Slack!

Finally check your Slack channel to find your message!

Send a Message Between Actors

Introduction

While standalone Actors are useful, one can also network multiple Actors
to generate more complex workflows. Actors have the ability to send
messages to other Actors, allowing developers to chain together workflow
steps, each contained in a separate Actor.

In this section of the tutorial, we will deploy a simple
upstream-messenger Actor that sends a message to the
hello-world-actor that we deployed in the previous section. We will
demonstrate that the downstream hello-world-actor runs after it receives
the message from upstream-messenger.

Create a New Actor Named upstream-messenger

First, let’s write the code that our new Actor will run on execution.
Instead of manually writing these files, we can simply adapt one of the
provided Actor templates. To view all available Actor templates, issue:

$ tapis actors init -L
+--------------------+--------------------+--+----------+
| id | name | description | level |
+--------------------+--------------------+--+----------+
default	Default	Basic code and configuration skeleton	beginner
echo	Echo	Echo message	beginner
hello_world	Hello World	Say Hello, World!	beginner
sd2e_base	sd2e_base	Default reactor context for docker://sd2e/reactors:python3	beginner
tacc_reactors_base	tacc_reactors_base	Default actor context for docker://sd2e/reactors:python3	beginner
+--------------------+--------------------+--+----------+

Each template is a project directory for a different type of Actor. For
this Actor, let’s use the default template:

$ tapis actors init --template default --actor-name upstream-messenger
+-------+---+
| stage | message |
+-------+---+
setup	Project path: ./upstream_messenger
setup	CookieCutter variable name=upstream-messenger
setup	CookieCutter variable project_slug=upstream_messenger
setup	CookieCutter variable docker_namespace=taccuser
setup	CookieCutter variable docker_registry=https://index.docker.io
clone	Project path: ./upstream_messenger
+-------+---+
$ cd upstream_messenger
$ find -L .
.
./requirements.txt
./Dockerfile
./project.ini
./message.jsonschema
./default.py
./.gitignore
./secrets.jsonsample
./config.yml

We see that the tapis actors init command has initialized an Actor
project directory for us, and it already contains many files that we
could have written by hand such as the Dockerfile or the Python
source code in default.py.

The only file that was not provided by the template is secrets.json.
Let’s make an empty one now:

echo '{}' > secrets.json

Edit Actor Source

The Actor we just created doesn’t do much; it just says “hello world,”
like the hello-world-actor we deployed previously. Let’s change its
behavior so it does something more interesting, like message another
Actor. We will use the Python API command
sendMessage [https://agavepy.readthedocs.io/en/master/docsite/actors/actors.html#sendmessage-send-a-message-to-an-actor-mailbox]
to implement this. Using your favorite text editor, edit the
default.py script so it looks like:

import os
from agavepy.actors import get_context, get_client

def main():
 """Main entrypoint"""
 context = get_context()
 m = context['raw_message']
 print("Actor received message: {}".format(m))

 # Get an active Tapis client
 client = get_client()

 # Pull in the downstream Actor ID from the environment
 downstream_actor_id = context['DOWNSTREAM_ACTOR_ID']
 # alternatively:
 # downstream_actor_id = os.environ['DOWNSTREAM_ACTOR_ID']

 # Using our Tapis client, send a message to the downstream Actor
 message = 'greetings, hello-world-actor!'
 print("Sending message '{}' to {}".format(message, downstream_actor_id))
 response = client.actors.sendMessage(actorId=downstream_actor_id, body={"message": message})
 print("Successfully triggered execution '{}' on actor '{}'".format(response['executionId'], downstream_actor_id))

if __name__ == '__main__':
 main()

All we’ve done is add a block of code that calls the Tapis/Agave API so
that it sends a message to another Actor. Notice that we are mimicking
the CLI workflow from before:

	Action

	CLI

	Python API

	
Get an authenticated

Tapis client

	
tapis auth init

	
client = get_client()

	
Using the client,

send message to an

Actor

	
tapis actors submit

	
client.actors.sendMessage()

	
Using the client,

submit HPC job to

Tapis Application

	
tapis jobs submit

	
client.jobs.submit()

In fact, the CLI is making the same calls to the Python API under the
hood!

Notice that we haven’t actually defined which Actor ID we want to
send the message to. Per best practice, we’ve chosen not to “hard code”
the Actor ID into default.py, but rather read it from the Actor
environment, which we access via context['DOWNSTREAM_ACTOR_ID'] or
alternatively os.environ['DOWNSTREAM_ACTOR_ID']. To set the
DOWNSTREAM_ACTOR_ID, we need only define it in the Actor environment
when we deploy in the next step. The downstream Actor is the
hello-world-actor we deployed previously, and we can retrieve its ID
using the CLI:

$ tapis actors list
+---------------+--------------------+-------+-------------------------------+--------------------------+--------+--------+
| id | name | owner | image | lastUpdateTime | status | cronOn |
+---------------+--------------------+-------+-------------------------------+--------------------------+--------+--------+
| MqqbarbazBB8x | hello-world-actor | eho | tacc/hello-world:latest | 2021-08-24T19:13:44.036Z | READY | False |
+---------------+--------------------+-------+-------------------------------+--------------------------+--------+--------+

We will need this Actor ID (MqqbarbazBB8x in my case, yours will be
different) when we deploy in the next section.

Deploy Actor

Our new upstream-messenger Actor is now ready to deploy. Just like
before, we want to:

	Build the Docker image

	Push the Docker image

	Register the Docker image as a new Actor

Remember to replace the DOWNSTREAM_ACTOR_ID with the appropriate
Actor ID from above, and the placeholder taccuser with your
DockerHub username.

$ docker build -t taccuser/upstream-messenger:0.0.1 .
$ docker push taccuser/upstream-messenger:0.0.1
$ tapis actors create --repo taccuser/upstream-messenger:0.0.1 \
 -n upstream-messenger \
 -d "Sends message to another actor" \
 -e DOWNSTREAM_ACTOR_ID=MqqbarbazBB8x
+----------------+-----------------------------------+
| Field | Value |
+----------------+-----------------------------------+
id	MDfoobar7AOwx
name	upstream-messenger
owner	taccuser
image	taccuser/upstream-messenger:0.0.1
lastUpdateTime	2021-08-26T20:33:20.320620
status	SUBMITTED
cronOn	False
+----------------+-----------------------------------+

If deployment was successful, we should now see our new Actor:

$ tapis actors list
+---------------+--------------------+-------+-----------------------------------+--------------------------+--------+--------+
| id | name | owner | image | lastUpdateTime | status | cronOn |
+---------------+--------------------+-------+-----------------------------------+--------------------------+--------+--------+
| MqqbarbazBB8x | hello-world-actor | eho | tacc/hello-world:latest | 2021-08-24T19:13:44.036Z | READY | False |
| MDfoobar7AOwx | upstream-messenger | eho | taccuser/upstream-messenger:0.0.1 | 2021-08-24T20:23:07.619Z | READY | False |
+---------------+--------------------+-------+-----------------------------------+--------------------------+--------+--------+
$ tapis actors show -v MDfoobar7AOwx
{
 "id": "MDfoobar7AOwx",
 "name": "upstream-messenger",
 "description": "Sends message to another actor",
 "owner": "eho",
 "image": "enho/upstream-messenger:0.0.1",
 "createTime": "2021-09-21T20:35:33.39Z0",
 "lastUpdateTime": "2021-09-21T20:35:33.39Z0",
 "defaultEnvironment": {
 "DOWNSTREAM_ACTOR_ID": "MqqbarbazBB8x"
 },
 "gid": 859336,
 "hints": [],
 "link": "",
 "mounts": [],
 "privileged": false,
 "queue": "default",
 "stateless": true,
 "status": "READY",
 "statusMessage": " ",
 "token": true,
 "uid": 859336,
 "useContainerUid": false,
 "webhook": "",
 "cronOn": false,
 "cronSchedule": null,
 "cronNextEx": null,
 "_links": {
 "executions": "https://api.tacc.utexas.edu/actors/v2/MDfoobar7AOwx/executions",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/eho",
 "self": "https://api.tacc.utexas.edu/actors/v2/MDfoobar7AOwx"
 }
}

Send Message to upstream-messenger Using CLI

Once the upsteam_messenger Actor is READY, we can trigger a new
execution by sending it a message:

$ tapis actors submit -m 'hello, upstream-messenger!' MDfoobar7AOwx
+-------------+----------------------------+
| Field | Value |
+-------------+----------------------------+
| executionId | MDanexec7AOwx |
| msg | hello, upstream-messenger! |
+-------------+----------------------------+

As usual, we check the status of the execution, and show the logs when
it finishes:

$ tapis actors execs show MDfoobar7AOwx MDanexec7AOwx
+-----------+-----------------------------+
| Field | Value |
+-----------+-----------------------------+
actorId	MDfoobar7AOwx
apiServer	https://api.tacc.utexas.edu
id	MDanexec7AOwx
status	COMPLETE
workerId	wZvworker1KmQ
+-----------+-----------------------------+
$ tapis actors execs logs MDfoobar7AOwx MDanexec7AOwx
Actor received message: hello, upstream-messenger!
Sending message 'greetings, hello-world-actor!' to MqqbarbazBB8x
Successfully triggered execution '5P7foobarrrA6' on actor 'MqqbarbazBB8x'

Check Execution of Downstream hello-world-actor

The goal of this tutorial was to send a message to
upstream-messenger and have it trigger an execution on
hello-world-actor. Let’s check the status of the execution and inspect
the logs:

$ tapis actors execs show MqqbarbazBB8x 5P7foobarrrA6
+-----------+-----------------------------+
| Field | Value |
+-----------+-----------------------------+
actorId	MqqbarbazBB8x
apiServer	https://api.tacc.utexas.edu
id	5P7foobarrrA6
status	COMPLETE
workerId	DJPworkerzKlN
+-----------+-----------------------------+
$ tapis actors execs logs MqqbarbazBB8x 5P7foobarrrA6
Logs for execution 5P7foobarrrA6
 Actor received message: hello, hello-world-actor!

Conclusion

Congratulations! We have successfully deployed a workflow that sends a
message between two Actors. Of course, real-world multi-Actor workflows
will send much more useful information than “hello, world.” In practice,
messages contain file paths, names of analyses to run, and other
metadata. It is also possible for one Actor to send messages to multiple
other Actors, allowing for a single action such as a file upload to
trigger many downstream processes, such as file management, running
analyses, logging, and more.

Deploying a Sequencing Pipeline

Introduction

Thus far, we have demonstrated several useful features of actors:

	Deployment, execution, and handling using Tapis CLI

	Logging to 3rd party services (Slack in our example)

	Inter-Actor messaging

In this section of the tutorial, we will demonstrate this toolbox in a realistic example: a basic pipeline for
validating DNA sequencing data.

[image: A basic data pipeline for running FastQC]
We will leverage a few additional Actor capabilities beyond what we have covered previously:

	
	Actors can interact with TACC filesystems such as /work using the Tapis API
	
	We won’t cover this in depth today, but if you’re interested in Tapis Files,
please consult the Tapis documentation [https://tapis.readthedocs.io/en/latest/technical/files.html]

	Actors can submit HPC jobs, by submitting to Tapis Applications

Reusing as much of our previous work as possible, pipeline deployment will consist of the following steps:

	Deploy a Tapis App eho-fastqc-0.11.9 that runs the FastQC tool [https://github.com/sequana/fastqc] as HPC job

	Deploy new actor fastqc-launcher

	Change upstream-messenger so it uploads a fastq data file from the web to TACC Stockyard filesystem

	Re-deploy upstream-messenger so it sends the path to data file to the fastqc-launcher

Since deploying Tapis Apps is outside the scope of this tutorial, I have already completed the first step.
If you are interested in learning how to deploy Tapis Applications, I encourage you to consult
one of our in-depth Tapis tutorials [https://tacc-cloud.github.io/summer-institute-2021-tapis/] .

Deploy a New Actor fastqc-launcher

Here, we will create an Actor that launches an submits an HPC job to a
Tapis App. Recall that Tapis Apps are wrappers around computationally intensive processes. They are similar
to Actors in that they can be managed using the Tapis API, but unlike Actors, they are HPC jobs under the
hood.

Similar to the upstream-messenger, this new Actor (which we will call fastqc-launcher) leverages the active Tapis client
to interact with the Tapis ecosystem. In this case, we will submit to a
Tapis Application instead of messaging another Actor. We instantiate a new
Actor as before:

tapis actors init --template default --actor-name fastqc-launcher
cd fastqc_launcher
echo '{}' > secrets.json

We edit the Actor source code in default.py so it resembles:

import os
from agavepy.actors import get_context, get_client

def main():
 context = get_context()
 fastq_uri = context['raw_message']
 print("Actor received message: {}".format(fastq_uri))

 # Usually, one would perform some input validation before submitting
 # a job to a Tapis App. Here, we simply validate that the path looks
 # like a Tapis/Agave URI
 assert fastq_uri.startswith('agave://')

 # Get an active Tapis client
 client = get_client()

 # Using our Tapis client, submit a job to Tapis App eho-fastqc-0.11.9
 body = {
 "name": "fastqc-test",
 "appId": "eho-fastqc-0.11.9",
 "archive": False,
 "inputs": {
 "fastq": "agave://eho.work.storage/{}".format(os.path.basename(fastq_uri))
 }
 }
 response = client.jobs.submit(body=body)
 print("Successfully submitted job {} to Tapis App {}".format(response['id'], response['appId']))

if __name__ == '__main__':
 main()

We can deploy this new Actor as usual, by building, pushing, and registering the custom Docker
image as a new Actor:

$ docker build -t taccuser/fastqc-launcher:0.0.1 .
$ docker push taccuser/fastqc-launcher:0.0.1
$ tapis actors create --repo taccuser/fastqc-launcher:0.0.1 \
 -n fastqc-launcher \
 -d "Submits job to FastQC Tapis App"

Edit upstream-messenger Source

Using your favorite text editor, edit the default.py for upstream-messenger so it looks like:

import os
from agavepy.actors import get_context, get_client
import requests

def main():
 """Main entrypoint"""
 context = get_context()
 m = context['raw_message']
 print("Actor received message: {}".format(m))

 # Get an active Tapis client
 client = get_client()

 # Pull in the downstream Actor ID from the environment
 downstream_actor_id = context['DOWNSTREAM_ACTOR_ID']
 # alternatively:
 # downstream_actor_id = os.environ['DOWNSTREAM_ACTOR_ID']

 # Using our Tapis client,
 # upload our fastq file to TACC Stockyard using
 url = "https://raw.githubusercontent.com/eho-tacc/fastqc_app/main/tests/data_R1_001.fastq"
 systemId = 'eho.work.storage'
 files_resp = client.files.importData(
 fileName='example.fastq',
 filePath='/',
 systemId=systemId, urlToIngest=url)

 # Using our Tapis client, send the message containing file path
 # to the downstream Actor
 message = "agave://{}/{}".format(systemId, files_resp['path'])
 print("Sending message '{}' to {}".format(message, downstream_actor_id))
 response = client.actors.sendMessage(actorId=downstream_actor_id, body={"message": message})
 print("Successfully triggered execution '{}' on actor '{}'".format(response['executionId'], downstream_actor_id))

if __name__ == '__main__':
 main()

Re-deploy Actor upstream-messenger

Our Actor upstream-messenger is still configured to send messages to hello-world-actor.
We would instead like it to send messages to our new actor fastqc-launcher, so we must
update it with a new DOWNSTREAM_ACTOR_ID. Instead of deleting and deploying a new
Actor, we can instead:

	Build and push an updated Docker image

	Update the DOWNSTREAM_ACTOR_ID variable using tapis actors update

$ docker build -t enho/upstream-messenger:0.0.2 .
$ docker push enho/upstream-messenger:0.0.2
$ tapis actors update --repo taccuser/upstream-messenger:0.0.2 \
 -e DOWNSTREAM_ACTOR_ID=$FASTQC_LAUNCHER_ID \
 MDfoobar7AOwx
+----------------+-----------------------------------+
| Field | Value |
+----------------+-----------------------------------+
id	MDfoobar7AOwx
name	upstream-messenger
owner	taccuser
image	taccuser/upstream-messenger:0.0.2
lastUpdateTime	2021-08-26T20:33:20.320620
status	SUBMITTED
cronOn	False
+----------------+-----------------------------------+

Test the Pipeline

Send Message to upstream-messenger Using CLI

Once the upsteam_messenger Actor is READY, we can trigger a new
execution by sending it a message:

$ tapis actors submit -m 'hello, FastQC pipeline!' MDfoobar7AOwx
+-------------+----------------------------+
| Field | Value |
+-------------+----------------------------+
| executionId | MDanexec7AOwx |
| msg | hello, FastQC pipeline! |
+-------------+----------------------------+

As usual, we check the status of the execution, and show the logs when
it finishes:

$ tapis actors execs show MDfoobar7AOwx MDanexec7AOwx
+-----------+-----------------------------+
| Field | Value |
+-----------+-----------------------------+
actorId	MDfoobar7AOwx
apiServer	https://api.tacc.utexas.edu
id	MDanexec7AOwx
status	COMPLETE
workerId	wZvworker1KmQ
+-----------+-----------------------------+
$ tapis actors execs logs MDfoobar7AOwx MDanexec7AOwx
Actor received message: hello, FastQC pipeline!
Sending message 'greetings, hello-world-actor!' to MqqbarbazBB8x
Successfully triggered execution '5P7foobarrrA6' on actor 'MqqbarbazBB8x'

Check File Upload

Using the Tapis CLI, we can check that the upstream-messenger created the expected file:

$ tapis files show agave://eho.work.storage/example.fastq
+--------------+-------------------------------+
| Field | Value |
+--------------+-------------------------------+
name	example.fastq
path	/work/06634/eho/example.fastq
lastModified	20 seconds ago
length	64431
permissions	READ_WRITE
mimeType	application/octet-stream
type	file
+--------------+-------------------------------+

Check Execution of Downstream fastqc-launcher

Let’s check the status of the execution and inspect the logs:

$ tapis actors execs logs MqqbarbazBB8x wKoAJD5NykAKN
Logs for execution wKoAJD5NykAKN
Actor received message: agave://eho.work.storage/example.fastq
Successfully submitted job 6c9d5842-XXXX-XXXX-XXXX-f07b1f73b948-007 to Tapis App eho-fastqc-0.11.9

Check Job Submitted to FastQC Tapis App

Finally, let’s check that our test job using the FastQC Tapis App successfully finished.
We can check the status of this job using the CLI:

$ tapis jobs show 6c9d5842-XXXX-XXXX-XXXX-f07b1f73b948-007
+--------------------+---+
| Field | Value |
+--------------------+---+
accepted	2021-09-22T21:39:06.147Z
appId	eho-fastqc-0.11.9
appUuid	4765625137153839596-XXXXXXXX-0001-005
archive	False
archivePath	eho/archive/jobs/job-XXXXXXXX-XXXX-XXXX-afbf-f07b1f73b948-007
archiveSystem	None
blockedCount	0
created	2021-09-22T21:39:06.152Z
ended	4 minutes ago
failedStatusChecks	0
id	6c9d5842-3066-XXXX-XXXX-f07b1f73b948-007
lastStatusCheck	4 minutes ago
lastStatusMessage	Transitioning from status CLEANING_UP to FINISHED in phase ARCHIVING.
lastUpdated	2021-09-22T21:40:52.194Z
maxHours	0.5
memoryPerNode	1.0
name	fastqc-test
nodeCount	1
owner	eho
processorsPerNode	1
remoteEnded	4 minutes ago
remoteJobId	8493758
remoteOutcome	FINISHED
remoteQueue	normal
remoteStarted	2021-09-22T21:39:42.702Z
remoteStatusChecks	2
remoteSubmitted	5 minutes ago
schedulerJobId	None
status	FINISHED
submitRetries	0
systemId	eho.stampede2.execution
tenantId	tacc.prod
tenantQueue	aloe.jobq.tacc.prod.submit.DefaultQueue
visible	True
workPath	/scratch/06634/eho/eho/job-XXXXXXXX-XXXX-XXXX-XXXX-f07b1f73b948-007-fastqc-test
+--------------------+---+

We can also download and inspect the job outputs:

$ tapis jobs outputs download 6c9d5842-XXXX-XXXX-XXXX-f07b1f73b948-007
+-------------+-------+
| Field | Value |
+-------------+-------+
downloaded	11
skipped	0
messages	5
elapsed_sec	59
+-------------+-------+
$ cd 6c9d5842-3066-XXXX-XXXX-f07b1f73b948-007
$ cat ./*.err
...
Started analysis of example.fastq
$ cat ./*.out
Analysis complete for example.fastq

Index

Say “Hello World”

In this section, we create and test an Actor that says “Hello, World”.

Objectives for this session

	To build a Hello World Actor from an Existing Docker Image

Sections:

	Build Hello World Actor

Create a Custom Actor

This guide will demonstrate how to create a custom actor from scratch.

In this example, we will build a simple hello-world actor that says “Hello, World!”.

Before diving in, let’s make sure we have the following resources:

Prerequisites

Before getting started, you need to have the following:

	Familiarity with working at the command line

	Have Docker installed on your laptop:

	Install Docker on your laptop:

	Mac [https://docs.docker.com/docker-for-mac/]

	Windows [https://docs.docker.com/docker-for-windows/]

	Ubuntu [https://docs.docker.com/install/linux/docker-ce/ubuntu/]

Install the CLI

The Tapis CLI is available as a Python package. We highly recommend using
Python 3.7+ as the Python runtime behind the Tapis CLI.

Install with Pip

$ pip3 install tapis-cli

We’ll know Tapis CLI installed correctly when the tapis -h command returns some information about the application:

$ tapis -h

usage: tapis [--version] [-v | -q] [--log-file LOG_FILE] [-h] [--debug]

Tapis CLI: Scripting interface to the Tapis platform. Documentation at
https://tapis-cli.rtfd.io/. For support contact "TACC Help" <help@tacc.cloud>

optional arguments:
 --version show program's version number and exit
 -v, --verbose Increase verbosity of output. Can be repeated.
 -q, --quiet Suppress output except warnings and errors.
 --log-file LOG_FILE Specify a file to log output. Disabled by default.
 -h, --help Show help message and exit.
 --debug Show tracebacks on errors.

Commands:
 actors aliases create Add an Alias for an Actor
 actors aliases delete Delete an Actor Alias
 actors aliases list List all Actor Aliases
 actors aliases show Show details for an Actor Alias
 actors aliases update Update an Alias to resolve to a different Actor
 actors create Create an Actor
 actors delete Delete an Actor
 ...

Components of an Actor

Make a new directory and add the following files:

$ mkdir hello-world-actor/ && cd hello-world-actor/

$ touch Dockerfile requirements.txt actor.py

$ tree ../hello-world-actor/
hello-world-actor/
├── Dockerfile
├── requirements.txt
└── actor.py

0 directories, 3 files

Write the Actor Function

The actor.py python script is where the code for your main function can
be found. An example of a functional actor that says “Hello, World!” is:

 """Say Hello, World or the message received from user input"""
 from agavepy.actors import get_context

 # function to print the message
 def say_hello_world(m):
 """Print message from user if present, else echo "Hello, World"""
 if m == " ":
 print("Actor says: Hello, World")
 else:
 print("Actor received message: {}".format(m))

def main():
"""Main entry to grab message context from user input"""
 context = get_context()
 message = context['raw_message']
 say_hello_world(message)

if __name__ == '__main__':
 main()

This code makes use of the agavepy python library which we will install in
the Docker container. The library includes an “actors” object which is useful to
grab the message and other context from the environment. And, it can be used to
interact with other parts of the Tapis platform. Add the above code to your
actor.py file.

Define Environment Variables

The secrets.json file may contain useful environment variables or
configurations to pass to the actor at creation time. These variables will be
part of the “context” taken from the environment, as in the example python
script above. For the purposes of this example, add the following definition to
secrets.json:

{
 "foo": "bar"
}

Create a Dockerfile

The only requirements are python and the agavepy python library, which is
available through
PyPi [https://pypi.org/].
A bare-bones Dockerfile needs to satisfy those dependencies, add the actor
python script, and set a default command to run the actor python script. Add
the following lines to your Dockerfile:

pull base image
FROM python:3.6

add requirements.txt to docker container
ADD requirements.txt /requirements.txt

install requirements.txt
RUN pip3 install -r /requirements.txt

add the python script to docker container
ADD actor.py /actor.py

command to run the python script
CMD ["python", "/actor.py"]

Tip

Creating small Docker images is important for maintaining actor speed and
efficiency

Build and Push the Dockerfile

The Docker image must be pushed to a public repository in order for the actor
to use it. Use the following Docker commands in your local actor folder to build
and push to a repository that you have access to:

Build and tag the image
$ docker build -t taccuser/hello-world:1.0 .
Sending build context to Docker daemon 4.096kB
Step 1/5 : FROM python:3.7-slim
...
Successfully built b0a76425e8b3
Successfully tagged taccuser/hello-world:1.0

Push the tagged image to Docker Hub
$ docker push taccuser/hello-world:1.0
The push refers to repository [docker.io/taccuser/word-count]
...
1.0: digest: sha256:67cc6f6f00589d9ae83b99d779e4893a25e103d07e4f660c14d9a0ee06a9ddaf size: 1995

What is an Actor?

For our purposes, an Actor is a container-based function-as-a-service deployed
on a software platform called Abaco, where it will follow the actor model of
concurrent computation.

	In response to a message it receives, an Actor can
	
	Make local decisions

	Create more actors

	Send more messages

	Determine how to respond to the next message received.

Actors may modify their own private state, but can only affect each
other indirectly through messaging. The actor model is characterized
by concurrency of computation within and among actors, dynamic
actor creation, requirement for actor addresses in messages, and
interaction only through direct message passing.

In the Tapis Actors implementation, each actor registered in the system is
associated with a Docker image. Actor containers are executed in response to
messages posted to their inbox, which itself is given by a URI exposed via the
system. In the process of executing each actor container state, logs and
execution statistics are collected.

Typically, functions performed by actors are quick and require little processing power.
Use cases with more substantial run times or resource requirements are usually
best addressed using Tapis Apps.

How Does an Actor Work?

The function an actor performs is specified as the default command
in a Docker container. Code for this function is written based around a
handful of core assumptions:

	The message is passed via an environment variable MSG

	Supplemental environment variables can be specified when the actor is deployed

	Parameters can be provided alongside the message, which are passed as additional environment variables

	The execution environment is read-only and unpriveleged

	Inbound network connections are disallowed

	Outbound network connections are unrestricted

	The execution environment is destroyed when the function has completed

	STDERR and STDOUT are captured by the Abaco platform for later review

Depending on the configuration of your specific Tapis Actors tenant, the following
additional assumptions may apply. For the tacc.prod tenant running at TACC, they
absolutely do.

	A Tapis access token is available via an environment variable

	Code will run as your TACC-default user and group ID

Workflow

The workflow for working with Actors will be covered in detail
in this tutorial, but briefly, is as follows:

	Write code and package into a Docker container

	Push the container to a public container registry (DockerHub)

	Register an actor to use the container

	Send a message to the actor

	Verify execution by inspecting the logs

	(Optional) Update container or actor

	(Optional) Share the actor with other users

	(Optional) Delete the actor

Learn More

For a full reference guide to actors, see the
Tapis Actors online documentation [https://tacc-cloud.readthedocs.io/projects/abaco/en/latest/index.html].

Send a Slack Message

In this section, we will learn how to use Webhooks with Actors to send notifications/messages to Slack.

Objectives for this session

	To build an Actor that sends a Slack Notification using a Webhook

Sections:

	Slackbot Actor

 nav.xhtml

 Table of Contents

 		
 Automating Work with Tapis Actors

 		
 Introduction to Tapis Actors

 		
 What is Tapis?

 		
 What is Tapis Actors?

 		
 What is the use case?

 		
 What is an Actor?

 		
 How Does an Actor Work?

 		
 Workflow

 		
 Learn More

 		
 Set Up Your Environment

 		
 Prerequisites

 		
 Local Development Environment

 		
 Configure the Tapis CLI

 		
 Using a VM

 		
 Build Hello World Actor

 		
 Create a New Actor

 		
 Submit a Message to the Actor

 		
 Check the Logs for an Execution

 		
 Run Synchronously

 		
 Delete and Update an Actor

 		
 Slackbot Actor

 		
 Writing Customized Actors

 		
 Initialize a New Actor slackbot-actor

 		
 Edit the Actor Source Code in actor.py

 		
 Write the Dockerfile

 		
 Build Docker Container

 		
 Create the Actor

 		
 Submit a Message to the Actor

 		
 List Executions of Actor

 		
 Check the Logs for an Execution

 		
 Send a Message Between Actors

 		
 Introduction

 		
 Create a New Actor Named upstream-messenger

 		
 Edit Actor Source

 		
 Deploy Actor

 		
 Send Message to upstream-messenger Using CLI

 		
 Check Execution of Downstream hello-world-actor

 		
 Conclusion

 		
 Deploying a Sequencing Pipeline

 		
 Introduction

 		
 Deploy a New Actor fastqc-launcher

 		
 Edit upstream-messenger Source

 		
 Re-deploy Actor upstream-messenger

 		
 Test the Pipeline

 		
 Send Message to upstream-messenger Using CLI

 		
 Check File Upload

 		
 Check Execution of Downstream fastqc-launcher

 		
 Check Job Submitted to FastQC Tapis App

_static/TACC-White-No-Mask.png
j SR
RSN TAN.

_images/20210916_taccster_actors_pipeline.png
tapis
actors
submit

Tapis Actor

Tapis App

—
.

Download sequencing
data to TACC
Stockyard (/work)

fastqc-launcher

Submit FastQC HPC job
(wrapped in Tapis App)

fastqc-app

Run FastQC (quality

control of sequencing

reads) as HPC job on
TACC Stampede2

_static/minus.png

_static/plus.png

_static/file.png

